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Abstract: In this paper we describe a method for designing 
switching controls and analyzing achievable performance for 
motor drives. The method is proposed as a means for 
constructing a family of controls to achieve acceptable 
operation of motors under a variety of fault conditions. 

I.  INTRODUCTION 
There is a growing demand for fault tolerance which can be 
achieved not only by improved component reliability, but also 
through fault detection and reconfiguration. A fault is usually 
understood as a component malfunction in the system that 
leads to undesirable overall system performance. Most fault 
tolerant control systems rely on redundancy of critical 
components may also rely on robust or adaptive control 
designs. The limitations of the latter approach have been noted 
in the literature.  

Many modern motor drives, incorporate fault 
detection and identification [1]. However, this information is 
typically used to shut down the system in order to prevent 
further damage. Little consideration has yet been given to 
continued operation, albeit with reduced performance. An 
exception is the single phase operation of a faulted three phase 
machine [2]. In this work we consider induction motors in 
which we are primarily concerned with inverter faults.  

We start with a set of fault scenarios, each scenario 
consisting of an individual or a combination of faults. Each 
scenario needs to be analyzed in terms of achievable 
performance and a controller that delivers maximum 
performance needs to be designed. The problem of control 
design in this setting is not trivial. Ordinarily, the control 
designer will have a deep understanding of the achievable 
performance of physical devices to be controlled. That not 
generally true for impaired devices. Consequently, one of our 
goals is to establish an analysis and design framework that can 
be systematically applied to each fault scenario. 

In recent years there have been numerous 
investigations of advanced control methods for motors; 
particularly induction motors. The techniques applied include 
feedback linearization, adaptive control, and variable structure 
methods among others [3-5]. Feedback linearization is method 
of transforming a system with significant nonlinearities to an 
equivalent system that has a linear input output structure. 
Thus, linear design tools might then be applied. Not all 

systems are feedback linearizable, but the motors of interest to 
us here are. Systems that are feedback linearizable are 
amenable to the design of parameter adaptive and self-tuning 
control systems. Feedback linearization is a formalization and 
generalization of specialized decoupling and cancellation 
strategies that are used in many electro-mechanical systems. 
Even today, such ad hoc designs are developed without any 
apparent reference to the general theory, e.g. [6]. Variable 
structure control systems are switching control systems. They 
have certain useful robustness properties that make them 
appealing. This design approach is attractive for motor drives 
which are inherently switching devices. Of the many 
approaches to variable structure control design, the so-called 
sliding mode method introduced by Utkin [7] is by far the 
popular. This technique was first applied to motor control in 
the early 1980’s [8, 9] and continues to be of interest, e.g. [10, 
11]. The connection between feedback linearization and 
sliding mode control was established in [12] and the methods 
described therein applied to AC drives in  [13]. A benefit of 
this approach is that it provides a systematic method to study 
achievable performance as well as to design controllers.  

In this paper, we present a detailed analysis and 
synthesis of induction motor speed control is provided based 
on variable structure control [9, 10, 12]. Discontinuous 
controllers are designed for normal and impaired motors. 
Variable structure control design is a two step process. The 
first step is constructing the switching surfaces, while the 
second is designing the discontinuous controllers to enforce 
sliding. Sliding is achieved using Lyapunov design where a 
quadratic Lyapunov function is sought that produces a large 
domain of attraction. 

A conventional, balanced drive is used as well as a 
non-conventional drive that uses three independent H-bridges 
to drive the stator. A comparison is made of the nominal 
system performance using both drives. The conventional drive 
is seriously affected by at least two important drive faults. The 
first is an open gate drive ( 2F  in Figure 1) in which case the 
motor can be operated in single phase mode. The second is a 
transistor 1T  short circuit ( 3F ). In this case, transistor 4T  must 
be open and if the entire circuit can be removed ( 1F ) then 
operation with a single phase is also possible. 
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Figure 1. Conventional 3-phase drive – switches identify 
various faults. 

   
The independent H-bridge configuration allows two phase 
operation in similar circumstances. Variable structure 
controllers are designed and used to examine achievable 
performance for one and two phase operations. 

II.  CONTROL DESIGN 
The details of our approach to control design can be found in 
[12, 14]. We briefly summarize the essential ideas. We assume 
that the system is a nonlinear dynamical system described by 

 ( ) ( )x f x G x u= +�  (1) 

where nx R∈  is the state and mu R∈  is the control. In 
addition, we assume that there are precisely m  output 
variables my R∈  that we wish to regulate, 

 ( )y h x=  (2) 
In particular we seek a state feedback control such that the 
closed loop system is stable and ( ) 0y t →  as t → ∞ . Some 
systems defined by (1) and (2), including those we are 
interested, in are input-output linearizable by a state 
transformation and feedback. In this case there exists a 
transformation ( ),x zξ6  such that the system equations 
transform to 
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where ( )xρ  is an m m×  nonsingular matrix. In fact, the 
transformation can be constructed so , ,A B C  are in 
Brunovsky form. The first equation is referred to as the 
‘internal dynamics.’ 

Clearly, one can introduce a new control variable v  and 
choose ( )1u vρ α−= − +  so that the relation between the input 
v  and output y  is linear. We will not do this here. Instead, 
we will choose a switching control, 
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So that each control iu   switches across its switching surface 
0is =  between the smooth functions ( ) ( ),i iu x u x+ − . It is 

possible that closed loop trajectories exist in the intersection of 
the switching surfaces, ie., within the set ( ) 0s x =  These are 
called sliding modes. This set is called the ‘sliding manifold.’ 

One design approach forces sliding modes to occur [7]. 
Behavior in the sliding mode depends on the structure of the 
switching surface.  

The method proposed in [12] defines the switching surfaces 
by 

 ( ) ( )s x Kz x=  (5) 
and proposes one way to define K  that insures all sliding 
trajectories converge to a subset of the switching manifold that 
corresponds to 0y ≡ . 
 Once the switching surfaces are designed it is necessary to 
specify ( ) ( ),i iu x u x+ −  to force all trajectories to enter the 
sliding manifold. This is accomplished with a Lyapunov 
analysis. Define the function 

 ( ) TV s s Qs=  (6) 
And compute using (3) and (5) 

 [ ]2 2T T TV KAz QKz u QKzα ρ= + +�  (7) 

If we further assume that the control is bounded, say i iu U≤ , 

then we can minimize V�  by choosing 
 ( )( ) ( ) ( ) ( )* *sign , T

i i iu U s x s x x QKz xρ= − =  (8) 

Then 0V <�  provided 

 [ ]TT TU QKz KA QKzρ α> +  (9) 

III.  INDUCTION MOTOR ANALYSIS 
Consider a 3-phase induction motor with two field windings. 
With the conventional drive topology, the balanced operation 
condition 1 2 3 0i i i+ + =  is enforced, in which case the motor 
dynamics in Blondel-Park coordinates are 
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The rotor and stator flux are given by 
 , ,,r d f fd fd d r q f fq fd qL i L i L i L iψ ψ= + = +  (11) 

 , ,,s d s d fd fd s q s q fd fqL i L i L i L iψ ψ= + = +  (12) 
The electrical torque is 

 fd fd d fd fq qT L i i L i i= −  (13) 
ω  denotes the rotor speed and τ  the mechanical load torque. 
Let us consider the constant speed operation of the motor, 

0ω ω=  and 0τ τ= . The 3 stator windings are supplied with 
alternating current at frequency sω  and separated in phase by 
2 / 3π  radians. A stator electromagnetic field is established of 
constant magnitude and it rotates about the motor axis at a 
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frequency of sω .The rotor rotates at a speed sω ω<  so that an 
alternating current is induced in the rotor coils at a frequency 
of sω ω ω∆ = − . In this way a rotor electromagnetic field is 
established that rotates at a speed of ω∆  relative to the rotor 
or at a speed of sω  relative to inertial space. Consequently, 
the stator and rotor electromagnetic fields rotate at the same 
speed in inertial space, separated by a constant phase angle. 
The ,d q - axis and rotor currents and voltages vary 
periodically in time with a frequency of ω∆ .  

In designing a speed regulator we want to achieve the 
steady state operation described above. We wish to regulate 
the rotor speed 0ω ω→ . However, because we have multiple 
control inputs, 0, ,d qv v v , or equivalently, 1 2 3, ,v v v , we can 
regulate additional variables as well.  Consequently it makes 
sense to regulate 0 0i →  to force balanced operation and also 
the electromagnetic flux magnitude 0ψ ψ→ . In the case of 
the conventional drive, balance operation is enforced by the 
topology of the drive circuitry, and there are only two 
independent voltages.  So, we have 2 regulated outputs: 
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 To facilitate an understanding of motor operation, we note 
that the partial transformation x z6  is defined by 
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If ( ) 0y t ≡ , as we require, it must be that ( ) 0z x ≡ . Using  
(14) this condition leads to the following result [12]: along 
trajectories satisfying  ( ) 0y t ≡ , the rotor flux satisfies the 
differential equation 
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With initial conditions satisfying 
 ( ) ( )2 2 2

00 0rd rqψ ψ ψ+ =  (16) 
We also obtain the rotor and stator currents as a function of 
the flux components: 
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Thus, the flux and current components are all sinusoidal in 
time. From (15) and (16) we see that the flux vector rotates 
with a speed 0frω τ ψ∆ =  relative to the rotor, and from (17) 

and (18) we further conclude that the rotor current phasor 
leads the stator current phasor by an angle of ( )0tan fr τ ψ . 

These results confirm our understanding of how the 
unimpaired motor operates, but the same technique can be 
used for the faulted motor. 

IV.  MOTOR CONTROL 
The system dynamics (10) can be written in the form (1) with 
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Where the state and control are 

 

T

d q fd fq

T

d q

x i i i i

u v v
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 (21) 

We wish to implement the switching control with the stator 
voltages 1 2 3, ,v v v  rather than the Blondel-Park voltages, so we 
use the we use the Blondel-Park transformation and the fact 
that 0 0v =  to derive the replacement relation 
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Moreover, because we now have a θ -dependence we add 
the equation θ ω=�  to the system defined by (19) and (20). 
The controller (8) is computed as 

 ( ) ( )* * *sign , , , , , ,
T T

i i d q fd fqv V s s i i i i B QKzθ ω ρ= =  (22) 
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Where z and *B  are given above, and 
 

 
1 0 1 1 0 0

, , 30
0 5 0 0 10 1
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V.   SIMULATIONS 
The system with the controller described above has been 

simulated and we show 
some of the results. The 
data is as follows:  

0

0.0433, 0.065, 0.065
0.15, 0.5,

s f

f

J L L
r τ ω

= = =

= = =

 Figure 3 shows the two regulated variables, speed and rotor 
flux magnitude. Note that the sliding behavior for the speed 
has been specified to have a 1 sec time constant whereas the 
sliding time constant for rotor flux has been specified to be 
0.1 sec. 

Figure 2 shows the stator currents in the Blondel-Park 
coordinates ,d qi i . We see the anticipated sinusoidal 
waveforms. The rotor currents show the same behavior. 

Figure 4 and Figure 5 show the sliding surfaces. 
 ( ) ( )s x Kz x=  

 It is seen that sliding is achieved quite rapidly. 

VI.  CONCLUSIONS 
This paper describes a general procedure for designing 
switching controllers for motors. The methods proposed can 
be used to  investigate the achievable performance and to 
design controllers for intact and impaired motors Here we 
have illustrated the process for the speed control of 
unimpaired inductions motors. It applies equally well to 
permanent magnet or synchronous motors. 
 Other studies have been conducted for induction motors 
with a single rotor winding, with independent control of all 
three phase windings, and for various parameters and initial 
conditions. Current work addresses a variety of impaired 

motor cases. 
 The investigations to date implement controllers with the 
assumption of the availability of all states. Clearly, the rotor 
currents are not available so an estimator needs to be 
employed.  
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Figure 2. The stator currents. 
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Figure 3. The primary controlled variables, speed and 
rotor flux magnitude. 
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Figure 4. The sliding surfaces - long time scale. 
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Figure 5. The sliding surfaces - short time scale. 
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